CTD²: Cancer Target Discovery and Development

The Cancer Target Discovery and Development (CTD2) Network, a functional genomics initiative, bridges the gap between cancer genomics and biology. The Network aims to understand how tumor heterogeneity leads to drug resistance in order to develop optimal combinations of chemotherapy or small molecules in combination with immunotherapy. 

Banner for CTD squared program. Links to CTD squared program page
Last updated: January 03, 2019

News & Publications

previousnext
Graphical abstract from Lee et al., 2020.
CTD²
April 14, 2020

The diversity and heterogeneity within high-grade serous ovarian cancer (HGSC), which is the most lethal gynecologic malignancy, is not well understood. Here, we perform comprehensive multi-platform omics analyses, including integrated analysis, and immune monitoring on primary and metastatic...

Mitochondrial Dynamics in Pancreatic Cancer
CTD²
April 06, 2020

Doublecortin like kinase 1 (DCLK1) is an understudied kinase that is upregulated in a wide range of cancers, including pancreatic ductal adenocarcinoma (PDAC). However, little is known about its potential as a therapeutic target. We used chemoproteomic profiling and structure-based design to...

Overview of metabolically heterogeneous cellular subtypes in collective invasion and proposed co-targeting approach.
CTD²
March 24, 2020

Phenotypic heterogeneity exists within collectively invading packs of tumor cells, suggesting that cellular subtypes cooperate to drive invasion and metastasis. Here, we take a chemical biology approach to probe cell:cell cooperation within the collective invasion pack. These data reveal...

XL177A has a similar USP7 binding mode to XL188
CTD²
March 24, 2020

Ubiquitin specific peptidase 7 (USP7) is a deubiquitinating enzyme (DUB) that removes ubiquitin tags from specific protein substrates in order to alter their degradation rate and sub-cellular localization. USP7 has been proposed as a therapeutic target in several cancers because it has many...

Prostate Cancer Stage IIIA
CTD²
March 18, 2020

In our previous study, we observed that androgen deprivation therapy (ADT) may induce a compensatory increase in MAPK or JNK signaling. Here, we tested the effects of the MEK inhibitors PD0325901 and GSK1120212, ERK1/2 inhibitor GDC-0994, and the JNK inhibitor AS602801 alone and in combination...

O
O
O
O
O