CTD²: Cancer Target Discovery and Development

CTD2 bridges the gap between the enormous volumes of data generated by genomic characterization studies and the ability to use these data for the development of human cancer therapeutics. It specializes in computational and functional genomics approaches critical for translating next-generation sequencing data, as well as high-throughput and high content small molecule and genetic screens.

Cancer Target Discovery and Development

News & Publications

previousnext
Image of CTD2 Dashboard user interface
August 24, 2017

The Cancer Target Discovery and Development (CTD2) Network aims to use functional genomics to accelerate the translation of high-throughput and high-content genomic and small-molecule data towards use in precision oncology. As part of this goal, and to share its conclusions with the...

Graphical Abstract from Publication
July 27, 2017

Most human epithelial tumors harbor numerous alterations, making it difficult to predict which genes are required for tumor survival. To systematically identify cancer dependencies, we analyzed 501 genome-scale loss-of-function screens performed in diverse human cancer cell lines. We developed...

Image depicting cancer resistance
July 05, 2017

Plasticity of the cell state has been proposed to drive resistance to multiple classes of cancer therapies, thereby limiting their effectiveness. A high-mesenchymal cell state observed in human tumors and cancer cell lines has been associated with resistance to multiple treatment modalities...

3D image of non-small cell lung tumor within a body
July 01, 2017

Oncogene-specific changes in cellular signaling have been widely observed in lung cancer. Here, we investigated how these alterations could affect signaling heterogeneity and suggest novel therapeutic strategies. We compared signaling changes across six human bronchial epithelial cell (HBEC)...

Image of Osteosarcoma in a human bone
June 27, 2017

Through an shRNA screen, we identified the protein arginine methyltransferase Prmt1 as a vulnerable intervention point in murine p53/Rb-null osteosarcomas, the human counterpart of which lacks effective therapeutic options. Depletion of Prmt1 in p53-deficient cells impaired tumor initiation and...

June 06, 2016
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O