CTD²: Cancer Target Discovery and Development

CTD2 bridges the gap between the enormous volumes of data generated by genomic characterization studies and the ability to use these data for the development of human cancer therapeutics. It specializes in computational and functional genomics approaches critical for translating next-generation sequencing data, as well as high-throughput and high content small molecule and genetic screens.

Banner for CTD squared program. Links to CTD squared program page
Last updated: January 12, 2018

News & Publications

previousnext
CTD²
August 27, 2018

Combination therapies that produce synergistic growth inhibition are widely sought after for the pharmacotherapy of many pathological conditions. Therapeutic selectivity, however, depends on the difference between potency on disease-causing cells and potency on non-target cell types that cause...

4CXA Ribbon Structure
CTD²
August 13, 2018

Cyclin-dependent kinase 12 (CDK12) belongs to the cyclin-dependent kinase (CDK) family of serine/threonine protein kinases that regulate transcriptional and post-transcriptional processes, thereby modulating multiple cellular functions. Early studies characterised CDK12 as a transcriptional CDK...

Enzyme encoded by the PTPN11 gene
CTD²
August 13, 2018

Oncogenic alterations in the RAS/RAF/MEK/ERK pathway drive the growth of a wide spectrum of cancers. While BRAF and MEK inhibitors are efficacious against BRAFV600E-driven cancers, effective targeted therapies are lacking for most cancers driven by other pathway alterations, including...

Patient-Derived Models for Precision Oncology. Shown are key steps to enable functional drug testing on patient-derived organoids and the generation of a functional atlas of cancer.
CTD²
August 08, 2018

Although cancer research is progressing at an exponential rate, translating this knowledge to develop better cancer drugs and more effectively match drugs to patients is lagging. Genome profiling of tumors provides a snapshot of the genetic complexity of individual tumors, yet this knowledge is...

KRAS Protein Structure
CTD²
August 01, 2018

KRAS is the most commonly mutated oncogene in human cancer. Most KRAS-mutant cancers depend on sustained expression and signaling of KRAS, thus making it a high-priority therapeutic target. Unfortunately, development of direct small molecule inhibitors of KRAS function has been challenging. An...

O
O
O
O
O