599 Publications Available
September 05, 2019
Cell Stem Cell

CTD2 scientists at UCSF showed that neuroepithelial stem cells derived from normal induced pluripotent stem cells could be a powerful experimental resource to evaluate genetic mutations in medulloblastoma.

September 01, 2019

Scientists at Johns Hopkins University showed that E-cadherin is an essential factor in the seeding phases of metastasis in invasive ductal carcinomas. This is mediated by limiting reactive oxygen-mediated apoptosis.

September 01, 2019
Cancer Research

CTD2 scientists show that metformin suppresses the expression of head and neck squamous cell carcinoma (HNSCC) stem cell programs, causes loss of expression of cancer stem cell markers, and promotes terminal differentiation. This study informs the selection of patients at risk of developing HNSCC.

August 27, 2019

This study shows that transient overexpression of cyclin E in mammary epithelial cells generated chromosomal copy number alterations (CNAs) signatures. These CNAs can be translated to changes in gene expression patterns that drive tumor growth.

August 27, 2019
Cell Reports

Small-molecule and genome-scale CRISPR knock-out screens revealed that receptor tyrosine kinases and small heterodimer partner2 are vulnerabilities in rhabdoid tumor cell lines.

August 23, 2019

Scientists at UCSF developed a new analytical framework, GI manifold, for mapping and understanding genetic interactions. This approach describes the transcriptional states that a cell can occupy upon perturbation and could help in identifying synthetic lethal genetic interactions in cancer.

August 09, 2019

Saturated mutagenesis screen showed that p53 missense mutations in the DNA-binding domain exert a dominant-negative effect. This is a primary unit of selection for TP53 missense mutations.

August 07, 2019
Journal of Theoretical Biology

UCSD researchers developed a framework to simulate population dynamics of heterogeneous tumor cells with a reversible mechanism of resistance. The study provides insights to optimal cancer treatment methods and may guide the development of therapeutic strategies to evade drug resistance.

August 01, 2019
International Journal of Oncology

Researchers at the Emory CTD2 Center showed transcription factor, SOX4, knockdown induced WNT5a expression and increased WNT5a expression are associated with decreased invasive ability in bladder cancer cells.